The Embodied Greenhouse Gas Emissions of Carbon Dioxide Refrigerant (R-744) as an Adjustment to Global Warming Potential

by
Caley Johnson
U.S. EPA

Earth Technologies Forum, April 15, 2004

Life Cycle Climate Performance (LCCP) -What Information Do You Need?

- Pre-Use: Embodied Greenhouse Gas Emissions
 - Embodied Energy Emissions: From the energy required to produce and transport refrigerant and parts
 - Fugitive Emissions: refrigerant or byproduct from plant and transportation
- During Use- (TEWI)
- Post-Use

Finding the Pieces of the LCCP Puzzle

- Many Breakthroughs have been made (examples)
 - Gamlen et al. (1986) Fugitive emissions of CFC-12
 - Campbell and McCulloch (1998) embodied energy emissions of CFC-12 (R-12), HCFC-22 (R-22), HFC-134a (R-134a), ammonia, isobutane, and cyclopentane
 - A.D. Little (2002) Fugitive Emissions of HCFC-22,
 HFC-134a
 - Krieger et al. (2004) Embodied energy and fugitive emissions of HFC-152a

Finding the Pieces of the LCCP Puzzle

(Continued)

Refrigerant	Embodied	Fugitive	Atmospheric	100	Adjusted GWP
The second second	Energy,	Emissions	Life	year	The second second second second
7000	kgCO2/kgR		Selection of the last section in the last sect	GWP	
CFC-12	3	265	100 years	10600	10868
HCFC-22	3	390	11.9 years	1700	2093
HFC-134a	5.2	4.2	13.8 years	1300	1309.4
HFC-152a	1.9	0.3	1.4 years	140	122.2
CO2	?????	?????	>50 years	1, 2,	?????

- Embodied Energy values from Campbell and McCulloch, 1998 and Krieger, Bateman, and Sylvester 2004
- Fugitive Emission Values from Gamlen et.al. 1986 and Arthur D. Little, 2002
- Atmospheric Live from 2002 RTOC Report
- 100 Year GWP values from IPCC 2001

And Now For Carbon Dioxide!

- Embodied Energy Emissions
 - Production
 - Transport
- Fugitive Emissions

Production Energy

- Depends on pressure and purity of feedgas
 - Well Sources- High P&P
 - Base GWP=1
 - Scavanged Sources- Medium P&P
 - Ammonia, Ethanol, Oil Refineries, Gypsum
 - Base GWP=0
 - Combustion Sources- Very Low P&P
 - Not used for refrigerant- inefficient and impure
 - Base GWP=1

Looking at Main-Stream Market

 Directory of Limiting Characteristics and Quality Verification Levels

Limiting	Quality Verification Levels						
Characteristics	E	F	G	H	AL FI	J	
CO2, % min	99.0	99.5	99.5	99.8	99.8	Dry ice only-	
Water, ppm	200	120	32	32	20	same as I, increased non-	
Dew Point, °C	-35.6	-40	-51	-51	-55	volatile residues	

- Compressed Gas Association's Handbook of Compressed Gases
- SAE Proposed Purity Specification= Grade F or Better
- All production from contacted companies adheres to this standard
 - below this is corrosive to expensive equipment

Production Energy Calculated

- 4 Largest Producers= 80% of Market
- Purification/Liquefaction powered by electricity
 - Reported 39-77 kWh/tonne (35-70 kWh/ton) for well sources
 - Reported 165-248 kWh per tonne (150-225 kWh/ton) for scavenged sources
- 0.69 kg CO2 emitted for every kWh distributed
 - 0.63 kg emitted per kWh produced (eGRID 2002)
 - transmission inefficiency of 9% (EIA 2002)

Production Energy Calculated

(continued)

Well Sources

- lower bound 0.027 kg CO2 per kg R-744 produced
- upper bound 0.054 kg CO2 per kg R-744 produced

Scavenged Sources

- lower bound 0.114 kg CO2 per kg R-744 produced
- upper bound 0.171 kg CO2 per kg R-744 produced

Transportation Energy

- Depends more on distances (distribution of factories and customers) than on type of transport.
- Two producers (28% of market) reported
- Two forms of transport
 - Truck 75%
 - Rail 25%

Transportation Energy Calculated

Trucks

- Companies manage their own fleets
- Reported 5.8 and 7.5 liters/tonne (1.4 and 1.8 gallons/ton)

• Rail

- Reported average rail distances of 805 and 1770 km
 (500 and 1100 miles)
- Average rail efficiency 0.0025 gal/ton-mile
 (Association of American Railroads, 2002)
- 5.22 and 11.47 liters/tonne (1.25 and 2.75 gal/ton)

Transportation Energy Calculated

(continued)

- Weighted both companies diesel use for 75% trucking 25% rail
 - Company 1 = 5.66 L/tonne (1.36 gal/ton)
 - Company 2= 8.49 L/tonne (2.03 gal/ton)
- 1 liter diesel= 2.68 kg CO2 emitted (1 gal= 22.38 lbs) (EIA, 2003)
- Lower bound 0.015kg CO2 per kg R-744 Transported
- Upper bound 0.023 kg CO2 per kg R-744 Transported

Fugitive Emissions

- CO2 production has no byproducts
- Just look at CO2 leakage
- Producers say
 - Plant 1-2%
 - Transportation 3-7%
- Totals 4-9%, or 0.04-0.09 kg CO2 emitted per kg R-744 produced and delivered.

Combined Embodied Energy and Fugitive Emissions Lead to Adjusted GWP

and the second									
CO2 Source	Content GWP (100 year)			kg. CO2/ kg R- 744 transported		fugitive emissions kg CO2/kg R- 744		Total kg CO2/kg produced and trans-ported + GWP	
		Lower	Upper	Lower	Upper	Lower	Upper	Lower	Upper
Scavenged	0	0.114	0.171	0.015	0.023	0	0	0.129	0.194
Wells	1	0.027	0.054	0.015	0.023	0.040	0.090	1.082	1.167
Weighted	0.28	0.090	0.138	0.015	0.023	0.029	0.065	0.4	0.5
(28% Well,	100	The Contract of	9 TEST		THE RESERVE	The same of	100	DEBON N	
72%	ile de	100			4	HOUSE OF	CONTRACTOR OF THE PARTY OF	CARCLES ST	
Scavenged)	TE ARE	- Albertality	SIMILE	He was	The same	100	W. Buch	Sec. 5. 0	32 (U. 1980)

- Entire Range is 0.129 to 1.167 kg CO2 per kg CO2
- This is Adjusted GWP!!
- Weighted Range is 0.4 to 0.5 GWP

Information for Refrigerant Comparison

Refrigerant	Embodied Energy, kgCO2/kgR	Fugitive Emissions	Atmospheric Life	100 year GWP	Adjusted GWP (not weighted)
CFC-12	3	265	100 years	10600	10868
HCFC-22	3	390	11.9 years	1700	2093
HFC-134a	5.2	4.2	13.8 years	1300	1309.4
HFC-152a	1.9	0.3	1.4 years	140	122.2
CO2	0.04 to 0.19	0 to 0.09	>50 years	0 to 1	0.13 to 1.17

- Embodied Energy values from Campbell and McCulloch, 1998 and Krieger, Bateman, and Sylvester 2004
- Fugitive Emission Values from Gamlen et.al. 1986 and Arthur D. Little, 2002
- Atmospheric Live from 2002 RTOC Report
- 100 Year GWP values from IPCC 2001

Additional Information

- Caley Johnson
- johnson.caley@epa.gov
- 202-343-9234